Synthesis of 4-Aryl-4,6-dihydropyrimido[4,5- d]pyridazine-2,5(1H,3H)-diones from Biginelli Compounds

by Gopal Chandra Patra, Sankar Chandra Bhunia, Monoj Kumar Roy, and Sudhir Chandra Pal*

 Chemistry Department, Midnapore College, Midnapore, W. B., India (phone: +91-32-22275847; fax: +91-32-22275847; e-mail: sudhirpal08@gmail.com)Biginelli compounds $\mathbf{1}$ were first brominated at $\mathrm{Me}-\mathrm{C}(6)$ with 2,4,4,6-tetrabromocyclohex-2,5-dien-1-one to give $\mathrm{Br}_{2} \mathrm{CH}-\mathrm{C}(6)$ derivatives $\mathbf{2}$. The hydrolysis of the 6 -(dibromomethyl) group of $\mathbf{2 c}$ to give the 6-formyl derivative $\mathbf{3 c}$ in the presence of an expensive Ag salt followed by reaction with $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ yielded tetrahydropyrimido[4,5-d]pyridazine-2,5(1H,3H)-dione (4c; Scheme 1). However, treatment of the 6-(dibromomethyl) derivatives 2 directly with $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ led to the fused heterocycles $\mathbf{4}$ in better overall yield (Schemes 1 and 2; Table).

Introduction. - The Biginelli condensation [1][2] is an important multicomponent reaction that yields compounds with a dihydropyrimidine core. These compounds are reported to have useful pharmacological and other biological activities [3][4]. The parent Biginelli products of type $\mathbf{1}$ have several functionalities that could be modified easily, and numerous derivatives have been prepared for evaluation as drugs and compounds with other biological functions [3]. Several products were synthesized via 6-(monobromomethyl) derivatives [5-9] and only one via a 6-(dibromomethyl) derivative of type 2 [10]. We decided to prepare some useful derivatives via the corresponding 6 -formyl compound. But the direct oxidation of $\mathrm{Me}-\mathrm{C}(6)$ of $\mathbf{1}$ to a CHO group with SeO_{2} was not successful [11]. We expected that this could be done via the CHBr_{2} derivative 2. Thus, syntheses of some fused N -heterocycles from these 6 (dibromomethyl) derivatives $\mathbf{2}$ or the corresponding aldehydes were undertaken.

1a $\mathrm{Ar}=\mathrm{Ph}$
1b $\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
1c $\mathrm{Ar}=4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$
1d $\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$
1e $\mathrm{Ar}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$
1f $\mathrm{Ar}=$ Coumarin-6-yl

2a $\mathrm{Ar}=\mathrm{Ph}$
2b $\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
2c $\mathrm{Ar}=4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$
2d $\mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$
2e $\mathrm{Ar}=4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$
$2 f \mathrm{Ar}=$ Coumarin $-6-\mathrm{yl}$

Results and Discussion. - Initially, we used Br_{2} in CHCl_{3} and in AcOH , respectively, for the bromination of the Biginelli compounds $\mathbf{1}$ to give 2 [8][12][13]. The reactions gave incomplete conversion and resulted in mixtures of monobromo and dibromo products along with some unreacted starting material, even after a considerable period
of time and in the presence of excess Br_{2}. We obtained better yields of the 6(dibromomethyl) derivatives 2 from the Biginelli compounds $\mathbf{1}$ by means of 2,4,4,6-tetrabromocyclohexa-2,5-dien-1-one (TBCO) as bromination reagent [14]. As an example, the Biginelli product 1d furnished 65% of dibromo product 2d and 16% of monobromo compound when treated with Br_{2} in CHCl_{3} or AcOH . But 1d afforded the same two products in 86 and 8% yield, respectively, on treatment with 2.2 equiv. of TBCO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

First, we tried to convert dibromo derivative $\mathbf{2 c}$ into formyl derivative $\mathbf{3 c}$ by alkaline hydrolysis. However, the method was unsuccessful. However, we succeeded in hydrolyzing $\mathbf{2 c}$ in the presence of AcOAg ; the formyl derivative $\mathbf{3 c}$ was then treated with $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ to obtain the targeted 4-(4-bromophenyl)-4,6-dihydro-pyrimido[4,5d]pyridazine-2,5-($1 \mathrm{H}, 3 \mathrm{H}$)-dione ($\mathbf{4 c}$) in an overall yield of 50.4% (Scheme 1). We then treated 2c directly with $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and isolated 3c in a much better yield $(79 \%$; Scheme 1).

Scheme 1

We then tested successfully the generality of the method with a few more 6(dibromomethyl) derivatives 2 (see Table). The protocol failed only in the case of compound $\mathbf{2 f}$ having a coumarin-6-yl (=2-oxo-2H-1-benzopyran-6-yl) substituent at $\mathrm{C}(4)$: a complex mixture resulted, possibly because of the involvement of the lactone ring of the coumarin-6-yl group.

Table. Synthesis of Pyrimidopyridazinediones $\mathbf{4}$ from 2: Reaction Conditions $(\mathrm{EtOH}, \mathrm{AcOH}$, reflux $)$ and Yield

Substrate	Reflux time $[\mathrm{h}]$	Product	R_{f} (solvent)of $\mathbf{4}$	Yield [\%]
$\mathbf{2 a}$	8	$\mathbf{4 a}$	$0.5(2 \% \mathrm{MeOH} / \mathrm{AcOEt})$	74
$\mathbf{2 b}$	7	$\mathbf{4 b}$	$0.4(80 \% \mathrm{AcOEt} /$ Petroleum ether $)$	75
2c	7	$\mathbf{4 c}$	$0.45(80 \% \mathrm{AcOEt} /$ Petroleum ether $)$	79
2d	9	$\mathbf{4 d}$	$0.5(80 \% \mathrm{AcOEt} /$ Petroleum ether $)$	82
2e	10	$\mathbf{4 e}$	$0.5(70 \% \mathrm{AcOEt} /$ Petroleum ether $)$	57

In view of the report [15] on the reaction of $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ at the $\mathrm{CO}_{2} \mathrm{Et}$ group of Biginelli compounds, we decided to test whether phenylhydrazine reacts with the 6(dibromomethyl) derivative $\mathbf{2 a}$ to yield $\mathbf{5}$ and then a cyclized product $\mathbf{6}$ (Scheme 2). But none of these products was formed; instead the hydrazone derivative 7 was obtained. From this result it may be concluded that $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ first reacts with the CHBr_{2} group,
and then the intramolecular condensation with $\mathrm{CO}_{2} \mathrm{Et}$ takes place resulting in the formation of the condensed heterocycles 4 (Scheme 2).

Scheme 2

Conclusions. - An easy and efficient route to 4-aryl-4,6-dihydropyrimido[4,5d]pyridazine-2,5-($1 \mathrm{H}, 3 \mathrm{H}$)-diones was established starting with the Biginelli compounds 1 via TBCO-assisted bromination followed by reaction with $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$.

The authors are very grateful to the $U G C$ for a minor research grant.

Experimental Part

General. Materials were used as received from the commercial suppliers. M.p.: determined in metal bath; uncorrected. IR Spectra: Spectrum-2 (Perkin-Elmer) spectrometer; \tilde{v} in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra: Bruker instruments; δ in ppm rel. to $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard, J in Hz . LC/MS: Micromass (Water) apparatus; in m / z. HR-MS: 4a: Micromass-Q-TOF spectrometer (for 4a) and Micro-TOF-Q-II10320 spectrometer (for $\mathbf{2 d}$); in m / z. Elemental analyses: Thermo-Finnigan-Flash-EA-1112 analyzer.

6-(Dibromomethyl) Derivatives 2: Typical Procedure [14]. To a soln. of $\mathbf{1 d}(2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 10 ml), a soln. of TBCO (6.6 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(c a .10 \mathrm{ml})$ was added slowly while stirring. Stirring was continued for $c a .45 \mathrm{~min}$ during which almost complete conversion occurred. A little more solvent was added, and the mixture was washed free from tribromophenol by repeated washings with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ soln. The org. layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and slowly concentrated to give crystals. The solid was recrystallized from CHCl_{3} to give pure $\mathbf{2 d}(86 \%)$. From the mother liquor, the monobromo compound was obtained (8\%).

Data of Ethyl 6-(Dibromomethyl)-1,2,3,4-tetrahydro-4-(4-methylphenyl)-2-oxopyrimidine-5-carboxylate (2d): IR (KBr): 3413 (br.), 1722, 1661, 502. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 8.02 ($s, 1 \mathrm{H}$); 7.12-7.19 ($A B, q, 4 \mathrm{H}) ; 6.99(s, 1 \mathrm{H}) ; 5.34(d, J=2.5,1 \mathrm{H}) ; 5.30(s, 1 \mathrm{H}) ; 4.13(q, J=7,2 \mathrm{H}) ; 2.33,(s, 3 \mathrm{H}) ; 1.19(t$, $J=7,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 163.88 ; 152.39 ; 144.12 ; 139.25 ; 138.30 ; 129.61 ; 126.55 ; 100.49$; $61.25 ; 55.10 ; 31.95 ; 21.10 ; 13.89$. LC/MS: $452.99\left([M+23]^{+}\right)$, 455 , and 456.99 in the intensity ratio $1: 2: 1$.

HR-MS: $430.9586,432.9585$, and $434.9567\left([M+1]^{+}, \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}^{+}\right)$in the intensity ratio of $1: 2: 1$; calc. $430.9600,432.9581$, and 434.9560.

Fused Heterocycles 4: General Procedure. To a soln. of $2(1 \mathrm{mmol})$ in EtOH $(15-20 \mathrm{ml}), \mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ $(80 \%$, ca. 1.5 mmol$)$ was added followed by $5-8$ drops of glacial AcOH. The mixture was heated under reflux for $6-10 \mathrm{~h}$ (TLC monitoring). Then, the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(c a .25 \mathrm{ml})$, neutralized with NaHCO_{3}, and then extracted with $\mathrm{AcOEt}(3 \times 15 \mathrm{ml})$. The combined extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated and the residue subjected to column chromatography (silica gel, 230-400 mesh). The products 4 were eluted with petroleum ether/AcOEt $2: 3$ to $1: 4$. For R_{f} values and yields, see Table.

4,6-Dihydro-4-phenylpyrimido[4,5-d pyridazine-2,5- $(1 \mathrm{H}, 3 \mathrm{H})$-dione (4a): M.p. $335^{\circ}(\mathrm{MeOH})$. IR (KBr): 3412, 3172, 1678, 1643. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.56(s, 1 \mathrm{H}) ; 9.70(s, 1 \mathrm{H}) ; 7.91(s, 1 \mathrm{H})$; $7.59-7.63(m, 2 H) ; 7.33-7.36(m, 2 H) ; 7.15-7.25(m, 2 H) ; 5.42(d, J=3.0,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}): 159.01; $151.95 ; 142.90 ; 138.77 ; 129.02 ; 128.45 ; 127.67 ; 126.28 ; 110.76 ; 52.07$. HR-MS: 243.0877 $\left([M+1]^{+}, \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}^{+}\right.$; calc. 243.0822).

4-(4-Chlorophenyl)-4,6-dihydropyrimido[4,5-d]pyridazine-2,5-($1 \mathrm{H}, 3 \mathrm{H}$)-dione (4b): M.p. 343-44 (MeOH). IR (KBr): 3249 (br.), 1702, 1647, 1621, 1259, 540. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $12.76(s, 1 \mathrm{H})$; $9.81(s, 1 \mathrm{H}) ; 7.87(s, 1 \mathrm{H}) ; 7.61(s, 1 \mathrm{H}) ; 7.32-7.60(A B, q, 4 \mathrm{H}) ; 5.35(d, J=3.0,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz, CDCl_{3}): 158.96; 151.74; 141.81; 138.82; 132.24; 129.03; 128.44; 128.24; 110.22; 51.60. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}_{2}$ (276.68): C 52.09, H 3.28, N 20.25; found: C 52.31, H 3.26, N 20.33.

4-(4-Bromophenyl)-4,6-dihydropyrimido[4,5-d Jpyridazine-2,5-(1H,3H)-dione (4c): M.p. 361° (MeOH). IR (KBr): 3323 (br.), 1692, 1642, 1252. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.76(s, 1 \mathrm{H}) ; 9.81$ (s, $1 \mathrm{H}) ; 7.88(s, 1 \mathrm{H}) ; 7.62(s, 1 \mathrm{H}) ; 7.55(d, J=8.3,2 \mathrm{H}) ; 7.29(d, J=8.3,2 \mathrm{H}) ; 5.35(d, J=2.5,1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $159.00 ; 151.78 ; 142.25 ; 138.87 ; 131.43 ; 129.09 ; 128.65 ; 120.85 ; 110.23 ; 51.71$. LC/MS: 323 and $325\left([M+1]^{+}\right)$in the ratio 1:2. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}(321.13): \mathrm{C} 44.88, \mathrm{H} 2.82, \mathrm{~N}$ 17.45; found: C 45.02, H 2.91, N 17.38.

4,6-Dihydro-4-(4-methylphenyl)pyrimido[4,5-d dpyridazine-2,5-(1H,3H)-dione (4d). M.p. 352° (MeOH). IR (KBr): 3341 (br.), 1678, 1651. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.70(s, 1 \mathrm{H}) ; 9.73(s, 1 \mathrm{H})$; $7.79(s, 1 \mathrm{H}) ; 7.61(s, 1 \mathrm{H}) ; 7.13-7.21(A B, q, 4 \mathrm{H}) ; 5.30(d, J=3.0,1 \mathrm{H}) ; 2.27(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 159.00; 151.98; 140.01; 138.65; 136.88; 129.00; 128.94; 126.16; 110.94; 51.75; 20.60. LC/MS: $257\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ (256.26): C 60.93, H 4.72, N 21.86; found: C 60.50, H 4.76, N 22.03.

4,6-Dihydro-4-(4-methoxyphenyl)pyrimido[4,5-d Jpyridazine-2,5-($1 \mathrm{H}, 3 \mathrm{H}$)-dione (4e). M.p. 336° (MeOH). IR (KBr): 3231 (br.), 1673, 1661. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.70(s, 1 \mathrm{H}) ; 9.73(s, 1 \mathrm{H})$; $7.79(s, 1 \mathrm{H}) ; 7.61(s, 1 \mathrm{H}) ; 7.23(d, J=8.7,2 \mathrm{H}) ; 6.90(d, J=8.7,2 \mathrm{H}) ; 5.29(d, J=2.8,1 \mathrm{H}) ; 3.73(s, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 158.96 ; 151.74 ; 138.69 ; 136.60 ; 130.72 ; 129.06 ; 126.81 ; 112.70 ; 110.32$; 56.26; 51.08. LC/MS: $273\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$ (272.26): C 57.35, H 4.44, N 20.58; found: C 57.55, H 4.48, N 20.43.

Ethyl 4-(4-Bromophenyl)-6-formyl-1,2,3,4-tetrahydro-2-oxopyrimidine-5-carboxylate (3c). To a soln. of $\mathbf{2 c}(0.5 \mathrm{mmol})$ in MeOH , a cold aq. MeOH soln. of $\mathrm{AcOAg}(0.5 \mathrm{mmol})$ was added and the mixture stirred for 20 min . Then, the MeOH was evaporated; the mixture diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and then extracted with AcOEt , the extract concentrated, and the residue recrystallized from $\mathrm{CHCl}_{3} / \mathrm{MeOH}: 3 \mathbf{3 c}$ (63%). Colorless solid. M.p 148°. IR (KBr): 3411, 1717, 1696, 1644. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.48(s$, $1 \mathrm{H}) ; 7.50(d, J=8.1,2 \mathrm{H}) ; 7.43(s, 1 \mathrm{H}) ; 7.23(d, J=8.1,2 \mathrm{H}) ; 5.94(s, 1 \mathrm{H}) ; 5.53(d, J=2.7,1 \mathrm{H}) ; 4.21(q$, $J=7.0,2 \mathrm{H}) ; 1.25(t, J=7.2,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 191.78 ; 163.00 ; 151.78 ; 142.26$; 138.87; 131.43; $129.09 ; 128.85 ; 108.20 ; 62.26 ; 51.72 ; 14.26$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{4}$ (353.17): C 47.61, H 3.71, N 7.93; found: C 47.50, H 3.74, N 8.01.

Ethyl 1,2,3,4-Tetrahydro-2-oxo-4-phenyl-6-[(2-phenylhydrazinylidene)methyl]pyrimidine-5-carboxylate (7). As described above for 4 (General Procedure), with 2a and phenylhdrazine in place of $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: 7$ (73%) M.p. $328-330^{\circ}$. IR (KBr): 3406 (br.), 3236, 1694, 1629, 1254. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 8.56(s, 1 \mathrm{H}) ; 8.19(s, 1 \mathrm{H}) ; 7.71(s, 1 \mathrm{H}) ; 7.01-7.30(m, 10 \mathrm{H}) ; 5.41(d, J=2.7,1 \mathrm{H}) ; 5.28(s, 1 \mathrm{H})$; $4.52(d, J=7.2,2 \mathrm{H}) ; 1.12(t, J=7.2,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 165.07 ; 151.85 ; 143.30 ; 142.66$; $140.95 ; 129.48 ; 128.83 ; 128.19 ; 127.71 ; 126.70 ; 121.99 ; 113.40 ; 102.69 ; 60.52 ; 56.13 ; 14.11$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ (364.40): C 65.92, H 5.53, N 15.38; found: C 66.05, H 5.49, N 15.44.

REFERENCES

[1] P. Biginelli, Gazz. Chim. Ital. 1893, 23, 360.
[2] C. O. Kappe, J. Org. Chem. 1997, 62, 7203.
[3] C. O. Kappe, Eur. J. Med. Chem. 2000, 35, 1043 and ref. cit. therein.
[4] H. A. Tawfik, F. Bassyouni, A. M. Gamal-Eldin, M. A. Abo-Zeid, W. S. El-Hamouly, Pharmacol. Reports 2009, 61, 1153.
[5] R. Pérez, T. Beryozkina, O. I. Zbruyev, W. Haas, C. O. Kappe, J. Comb. Chem. 2002, 4, 501.
[6] B. Khanetskyy, D. Dallinger, C. O. Kappe, J. Comb. Chem. 2004, 6, 884.
[7] T. George, R. Tahilramani, D. V. Mehta, Synthesis 1975, 405.
[8] Z-J. Quan, Q-B. Wei, D-D. Ma, Y-X. Da, X-C. Wang, M.-S. Shen, Synth. Commun. 2009, 39, 2230.
[9] N. A. Kheder, Y. N. Mabkhot, A. M. Farag, Heterocycles 2008, 75, 887.
[10] C. O. Kappe, Liebigs Ann. Chem. 1990, 505.
[11] E. L. Khanina, G. Duburs, Khim. Geterotsikl. Soedin. 1982, 535.
[12] G. Zigeuner, H. Hamberger, H. Blascke, H. Sterk, Monatsh. Chem. 1966, 97, 1408.
[13] G. Zigeuner, C. Knopp, Monatsh. Chem. 1970, 101, 1541.
[14] G. C. Patra, S. C. Bhunia, M. K. Roy, S. C. Pal, Synth. Commun., in press
[15] A. Sancheti, N. Swarnakar, M. D. Soni, J. Vardia, T. B. Punjabi, S. C. Ameta, J. Indian Chem. Soc. 2007, 84, 1234.

